Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects.

نویسندگان

  • Vishvarani Wanigasekera
  • Michael C Lee
  • Richard Rogers
  • Yazhuo Kong
  • Siri Leknes
  • Jesper Andersson
  • Irene Tracey
چکیده

Variability in opioid analgesia has been attributed to many factors. For example, genetic variability of the μ-opioid receptor (MOR)-encoding gene introduces variability in MOR function and endogenous opioid neurotransmission. Emerging evidence suggests that personality trait related to the experience of reward is linked to endogenous opioid neurotransmission. We hypothesized that opioid-induced behavioral analgesia would be predicted by the trait reward responsiveness (RWR) and the response of the brain reward circuitry to noxious stimuli at baseline before opioid administration. In healthy volunteers using functional magnetic resonance imaging and the μ-opioid agonist remifentanil, we found that the magnitude of behavioral opioid analgesia is positively correlated with the trait RWR and predicted by the neuronal response to painful noxious stimuli before infusion in key structures of the reward circuitry, such as the orbitofrontal cortex, nucleus accumbens, and the ventral tegmental area. These findings highlight the role of the brain reward circuitry in the expression of behavioral opioid analgesia. We also show a positive correlation between behavioral opioid analgesia and opioid-induced suppression of neuronal responses to noxious stimuli in key structures of the descending pain modulatory system (amygdala, periaqueductal gray, and rostral-ventromedial medulla), as well as the hippocampus. Further, these activity changes were predicted by the preinfusion period neuronal response to noxious stimuli within the ventral tegmentum. These results support the notion of future imaging-based subject-stratification paradigms that can guide therapeutic decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural response to reward anticipation is modulated by Gray's impulsivity

According to the Reinforcement Sensitivity Theory (RST), Gray's dimension of impulsivity, reflecting human trait reward sensitivity, determines the extent to which stimuli activate the Behavioural Approach System (BAS). The potential neural underpinnings of the BAS, however, remain poorly understood. In the present study, we examined the association between Gray's impulsivity as defined by the ...

متن کامل

Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers.

In this pilot study, we used functional magnetic resonance imaging (fMRI) to study the effects of morphine in 8 healthy, opioid-naïve volunteers. Intravenous small-dose morphine (4 mg/70 kg) or saline was administered to volunteers undergoing a fMRI scan. Infusion of morphine, but not saline, elicited mild euphoria without aversive symptoms and resulted in positive signal changes in reward stru...

متن کامل

Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward.

Opioids remain the most effective analgesics despite their potential adverse effects such as tolerance and addiction. Mechanisms underlying these opiate-mediated processes remain the subject of much debate. Here we describe opioid-induced behaviors of Lmx1b conditional knockout mice (Lmx1bf/f/p), which lack central serotonergic neurons, and we report that opioid analgesia is differentially depe...

متن کامل

Ventral Striatum Activity in Response to Reward: Differences Between Bipolar I and II Disorders

OBJECTIVE Little is known about the neurobiology of bipolar II disorder. While bipolar I disorder is associated with abnormally elevated activity in response to reward in the ventral striatum, a key component of reward circuitry, no studies have compared reward circuitry function in bipolar I and bipolar II disorders. Furthermore, associations among reward circuitry activity, reward sensitivity...

متن کامل

Intermittent Theta Burst Stimulation Increases Reward Responsiveness in Individuals with Higher Hedonic Capacity

BACKGROUND Repetitive transcranial magnetic stimulation over the left dorsolateral prefrontal cortex (DLPFC) has been documented to influence striatal and orbitofrontal dopaminergic activity implicated in reward processing. However, the exact neuropsychological mechanisms of how DLPFC stimulation may affect the reward system and how trait hedonic capacity may interact with the effects remains t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 43  شماره 

صفحات  -

تاریخ انتشار 2012